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1. Analysis of Discrete Systems

1.1 Trusses in 1D

1.1.1 Introduction

Truss structures, are the simplest possible discrete mechanical systems that we can consider.
Trusses consist of a collection of slender elements, which we often call bars. Bars, are elements
that we assume to be sufficiently thin, so that they have negligible resistance to torsion, bending
or shear and thus we only consider them to resist to axial deformation. In other words, bars
are the equivalent of springs, where only axial forces are able to deform the element whereas
off-axis forces cause the bar to translate and rotate in space as a rigid body.

A bar’s state of deformation is fully determined once the displacements of its endpoints
are known. For convenience, we often refer to the endpoints of a bar as “nodes” where the
connection between the bar’s nodes and the nodes of a finite element is soon to become
apparent! In this section, we will show how we can determine the behavior of an entire truss
structure by studying the deformation of its building blocks. Before we do so however, let’s
derive a relationship between the nodal displacements of each bar and the forces acting on
them.

1.1.2 The stiffness matrix

Figure 1.1 shows an example of a truss structure, from which we isolate an arbitrary bar and
study its deformation. It is useful to note that even though we can decompose the forces and
displacements to their components in the x−y coordinate system (as shown in Figure 1.1), it is
not necessary. Since a bar can only deform under the influence of axial forces, we can work on
a coordinate system ξ−ηwhose ξ axis lies along the axis of the bar. Doing so, any relationships
that we derive will be general and will apply to any bar in any structure, independent of its
actual orientation in the global system within the truss structure.
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Figure 1.1: A truss structure in which each bar behaves as a finite element
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Figure 1.2: The nodal displacements and forces of a bar in the global x− y coordinate system
(left) and in the local ξ − η coordinate system with the ξ axis aligned with the axis of the bar

The governing equations for the bar are derived as follows. We begin from the equilibrium
equations which take the simple form,

F e1 + F e2 = 0⇒ F e1 = −F e2 (1.1)

The bar is assumed to be made of a linear elastic material whose constitutive behavior1 is
given by Hooke’s law as,

σe =
F e

Ae
= Ee · εe ⇒ F e = Ee ·Ae · εe (1.2)

Finally, we have to make sure that when the bar deforms, its deformation is compatible with its
nodal displacements in order tomaintain continuity and avoid gaps or overlaps. This statement
is expressed through the kinematic or compatibility equations which for this example also
have a simple form,

εe =
δe

Le
=
ue2 − ue1
Le

(1.3)

1The terms constitutive behavior, constitutive law, stress–strain relationship are being used interchangeably
throughout the text.



1.1 Trusses in 1D 9

Now, we can just combine equations (1.1–1.3) to derive,

F e1 = −F e2 = − E
e ·Ae

Le︸ ︷︷ ︸
ke

(ue2 − ue1) (1.4)

where the quantity ke is often referred to as the stiffness of the bar, and is the direct equivalent
to the stiffness of a spring.[

F e1
F e1

]
= ke

[
1 −1
−1 1

]
·
[
ue1
ue2

]
⇒ Fe = Ke · de (1.5)

where

Fe =

[
F e1
F e1

]
, Ke = ke

[
1 −1
−1 1

]
, de =

[
ue1
ue2

]
The quantity Ke is referred to as the Stiffness Matrix of the element (bar), Fe represents the
vector of the nodal forces whereas de is the vector of the nodal displacements.

Remark 1 Note that the stiffness matrixKe is symmetric sinceKe = KeT but also singular
since det(Ke) = 0 and therefore it is not invertible.

Discussion 1 As a consequence of the fact that Ke is singular, we cannot solve with respect
to the unknown nodal displacements in the traditional way of inverting Ke so that de =
(Ke)−1 · Fe. But why? What does this mean, and what is the physical interpretation of a
singular stiffnessmatrix? The reasonwhyKe turned out to be singular is because so far, the bar
is completely unconstrained in space which means that it can attain multiple (actually infinite)
positions in space for the same choice of nodal forces. Give it a try! Equation (1.4) suggests
that both forces depend on the difference between the nodal displacements, suggesting that if
de∗ = [ue∗1 , u

e∗
2 ]T is a solution, then de∗∗ = de∗ + c is also a solution ∀c ∈ R.

Let us now try to generalize the procedure followed in the context of 1 bar, and analyze
the behavior of more complicated systems. The steps towards this generalization will be
demonstrated through the following example.
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1.1.3 From Local to Global: Assembly
� Example 1 Consider the system composed of two bars, loaded by external forces as shown in
Figure 1.3. Our goal is to relate the displacements ui to the external forces fi where i = 1, 2, 3.

f


f


f


u


u


u


x

k k

Figure 1.3: A system composed of two bars

(a). Preprocessing: We begin by breaking up the system to its individual components2
which in this case, are the two bars. Each bar is now a finite element and the elements
are connected through the nodes.

(b). Analysis: Next, we have to develop the governing equations for each one of the individ-
ual elements that the system was broken into. In this simple case, the truss system was
broken into two individual bars which means that the governing equations for both of
the bars are the same. In particular, according to expression (1.5) we can write,

Fe = Ke · de , e = 1, 2

Having written down the equations that describe the behavior of each bar we now

u1
1

F1, u2 F2,
u1 F1, u2 F2,

1 1 1 2 2 2 2

k1 k2

f


f


f
F1

1

F2
1

F1
2

F2

2

F1
2

F2
1 F2

2
F1

1

Figure 1.4: Splitting the truss structure into its components. Free body diagrams and force
balance

have to assemble them in such a way, that the equations would describe the behavior of
the whole structure instead of the behavior of the individual building blocks. This can

2This process will be extended to continuum systems where it is referred to as discretization.
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be made possible through a procedure that is commonly referred to as the Assembly
operation. Let’s write down the equations for each bar in matrix form to help us how
this operation works. We have,[

F 1
1

F 1
2

]
= k1

[
1 −1
−1 1

]
·
[
u11
u12

] [
F 2
1

F 2
2

]
= k2

[
1 −1
−1 1

]
·
[
u21
u22

]
(1.6)

Now comparing Figures 1.3-1.4 we can conclude that the “missing link” between the
two systems of equations is essentially,

u11 = u1

u12 = u21 = u2 (1.7)
u22 = u3

where displacements without superscripts refer to the structure’s displacements as
shown in Figure 1.3. The equations in (1.7) provide a link between the local and global
variables. It is impossible to solve any problem using the Finite ElementMethod, without
this link! In fact, this link is exactly what makes the Finite Element Method work in the
first place. However, it is rather uncommon to present this link in the form of equations
such as (1.7). Instead, we introduce a matrix which we call the Element Connectivity
matrix/chart which for our system takes the following form,

Table 1.1: The element connectivity matrix for the simple two-bar truss system in Figure 1.3

Element # Node 1 Node 2
1 1 2
2 2 3

Now back to our problem, in view of equations (1.7), the systems in (1.6) may be written
as, [

F 1
1

F 1
2

]
= k1

[
1 −1
−1 1

]
·
[
u1
u2

] [
F 2
1

F 2
2

]
= k2

[
1 −1
−1 1

]
·
[
u2
u3

]
(1.8)

Now notice that by expanding the matrices in (1.8) we can write,F 1
1

F 1
2

0


︸ ︷︷ ︸
F1

exp

= k1

 1 −1 0
−1 1 0
0 0 0


︸ ︷︷ ︸

K1
exp

·

u1u2
u3


︸ ︷︷ ︸

d

,

 0
F 2
1

F 2
2


︸ ︷︷ ︸
F2

exp

= k2

0 0 0
0 1 −1
0 −1 1


︸ ︷︷ ︸

K2
exp

·

u1u2
u3


︸ ︷︷ ︸

d

(1.9)

where now the vector [u1 u2 u3]
T is the global displacement vector. To complete the

assembly process we have to invoke force balance as shown in Figure 1.4 in order to
relate each element’s nodal forces F 1

1 , F
2
1 , F

2
1 , F

2
2 with the global internal forces f1, f2, f3.

It is straightforward to conclude that,

f1 − F 1
1 = 0⇒ f1 = F 1

1

f2 − F 1
2 − F 2

1 = 0⇒ f2 = F 1
2 + F 2

1 (1.10)
f3 − F 2

2 = 0⇒ f3 = F 2
2
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In other words, f1f2
f3


︸ ︷︷ ︸

F

=

F 1
1

F 1
2

0

+

 0
F 2
1

F 2
2



However, recall that F1
exp = K1

exp · d and F2
exp = K2

exp · d, which means that,

F = K1
exp · d + K2

exp · d =
(
K1

exp + K2
exp

)
· d = K · d

and

K =
∑
e

Ke
exp =

 k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

 (1.11)

Remark 2 Note that the global stiffness matrix K is symmetric since K = KT but
also singular since det(K) = 0 and therefore it is not invertible. The latter, as pointed
out before, is due to the fact that no boundary conditions where applied to constrain
the truss structure from moving as a rigid body. Lastly, the equations in F = K · d
are essentially the three equilibrium equations at the three nodes of the structure.

At this point, the Assembly operation has been completed. We have successfully con-
verted the two systems of equations that governed the behavior of each bar, to one (1)
system of equations that describes the behavior of the entire structure.

(c). Solution: We now proceed to the last and final step of our analysis, solving the equations.
We have already pointed out that the global stiffness matrixK is singular due to the fact
that no boundary conditions where applied to constrain the truss structure in space and
eliminate rigid body motions. We consider the two following scenarios for boundary
conditions.
In both cases, the boundary conditions will be enforced using the partition approach.
According to this approach, we partition the nodes as follows:
• E-nodes: Essential Nodes, or nodes for which the displacements are known
• F-nodes: Free Nodes, or nodes for which the displacements are unknown

This means, that every time we apply boundary conditions of any kind in a structure,
we will partition the global displacement vector d as,

d =

[
dE
dF

]
and note that dE , dF are still vectors in the general case.

Remark 3 Notice that is impossible to simultaneously prescribe both the displacement
and the force for any node, or any point in the structure. Recall from elementary solid
mechanics that if we prescribe the displacement of a point within a structure then the
(reaction) force at that point will be unknown. Equivalently, if the force is prescribed
at any point in the structure, then the displacement of that point will be unknown,
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k k

k k

f

=f



u

=u



u1=0

u1=0

Case A: Force Control

Case B: Displacement Control

Figure 1.5: Two cases of boundary conditions for the two-bar truss structure.

prior to the solution of the problem.

The above remark implies that if we partition the global force vector F in the same way
we did for d and write, [

FE
FF

]
=

[
KEE KEF

KFE KFF

]
·
[
dE
dF

]
then the reaction forces FE that correspond to the nodes at which we prescribed dis-
placements will be unknown. Furthermore, the displacements dF of the nodes at which
we applied forces will also be unknown. Now that we know what is known and what
is not, we may proceed by solving the system of equations in the following two steps.
First, we solve for dF from,

FF = KFE · dE + KFF · dF ⇒ dF = K−1FF · (FF −KFE · dE) (1.12)

Next, with dE known, we can solve for FE as,

FE = KEE · dE + KEF · dF (1.13)

Now let us consider the two particular cases shown in Figure 1.5 and solve for dF and
FE .
(A). Here, [

KEE KEF

KFE KFF

]
=

 k1 −k1 0

−k1 k1 + k2 −k2
0 −k2 k2

 ,

[
FE
FF

]
=

f1f2
f3

 =

f10
f̄3


and [

dE
dF

]
=

u1u2
u3

 =

 0

u2
u3


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which we can solve using equations (1.12) and (1.13) to find,[
u2
u3

]
= f̄3

[
1
k1(

1
k1

+ 1
k2

)] , f1 = −f̄3

(B). In this case,

[
KEE KEF

KFE KFF

]
=

 k1 0 −k1
0 k2 −k2
−k1 −k2 k1 + k2

 ,

[
FE
FF

]
=

f1f3
f2

 =

f1f3
0


and [

dE
dF

]
=

u1u3
u2

 =

 0
ū3
u2


and notice that we rearranged the equations in all the vectors and matrices in order
to make the grouping consistent. The solution for these boundary conditions is,

u2 =
k2

k1 + k2
ū3 ,

[
f1
f3

]
= ū3

k1 k2

k1 + k2

[
−1
1

]
�

�

Discussion 2 The stiffness matrix K is extremely important in all aspects of the finite element
method. However, even though we can readily interpret the concept of forces and displace-
ments, it is not entirely clear how the spring constant k of a linear spring that obeys Hooke’s
law generalizes to a matrix K. What is the physical significance of K and in particular of
elementKij?

K =


K11 K12 . . . K1N

K21 K22 . . . K2N
...

... . . . ...
KN1 KN2 . . . KNN


The component Kij represents the force i due to a unit displacement at note j while

keeping all other nodes fixed

� Example 2 In this example, we are considering a slightly more complicated problem, where
a system of 3 trusses is subjected to axial deformation through a force P . The configuration
considered in this problem is shown in Figure 1.6 and we are requested to determine the
unknown nodal displacements and reaction forces with respect to P .

Following the procedure outlined in example 1, we begin by writing the stiffness matrices
for each element in the structure as follows,

K(i) = ki
[

1 −1
−1 1

]
, i = 1, 2, 3 (1.14)
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Figure 1.6: An example of 3 bars connected to a rigid wall to the left and to a rigid body to the
right, loaded with a point force P in the x-direction

where ki = Ei · Ai/Li. At this point, we could pretend that since there are 5 nodes in total
in the problem, there are also 5 degrees of freedom, assuming that each node can move
independently from any other. However, the boundary conditions in both edges constrain
the nodes attached to them to move “as one” implying that the actual degrees of freedom for
this problem are just 3, as shown in Figure 1.6. We now construct the global stiffness matrix
assembling the individual stiffness matrices for each element to arrive at,

K =
∑
e

K(i) =

k1 + k2 −k2 −k1
−k2 k2 + k3 −k3
−k1 −k3 k1 + k3

 (1.15)

The nodal displacements and reaction forces are simply,

d =

u1u2
u3

 , F =

F1

F2

F3

 (1.16)

The boundary conditions, can now be expressed in terms of the ui and Fi as,

u1 = 0 , F2 = 0 , F3 = P

Therefore, we have,

dE =
[
0
]

, FE =
[
F1

]
, dF =

[
u2
u3

]
, FF =

[
0
P

]
(1.17)

and,

K =

k1 + k2 −k2 −k1
−k2 k2 + k3 −k3
−k1 −k3 k1 + k3

 (1.18)
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According to example 1 the first step is to solve with respect to dF using equation (1.12). We
have,

dF = K−1FF · (FF −KFE · dE)⇒
[
u2
u3

]
=

P

k1k2 + k2k3 + k1k3

[
k3

k2 + k3

]
and last, we solve for FE using (1.13) to find,

FE = KEE · dE + KEF · dF =

(k1 + k2) · 0 +
P

k1k2 + k2k3 + k1k3
[
−k2 − h1

]T · [ k3

k2 + k3

]
⇒

F1 =
k2k3 + k1k2 + k1k3

k1k2 + k2k3 + k1k3
P = −P

�
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1.2 Trusses in 2D
In this section, we will generalize the procedure used to solve truss problems in 1D, extending
it to apply for truss members randomly oriented in the 2D space. In the previous section, when
we first introduced the methodology to describe the deformation of a single truss member,
we briefly mentioned that the orientation of the bar does not matter in the analysis, as long
as we do all of our calculations in a local coordinate system whose one axis is aligned with
the axis of the bar. While this may be true in the case of 1 bar (see Figure 1.2), things are a bit
more complicated when we want to determine the behavior of a whole truss structure in 2D.
We still work on a local coordinate system in the context of individual bars but in order to
assemble the global stiffness matrix we have to “translate” our expressions back to the global
coordinate system and thus account for the bar’s orientation. Before we discuss the systematic
methodology to cope with 2D trusses let us outline the underlying assumptions for every
example or problem associated with trusses:
• The truss members (bars) are connected only at their ends
• The connections are frictionless pins and thus do not develop moments upon loading
• The structure can only “accept” external loads at the pins. All loads drawn as if they
were distributed over a finite region of the structure are also assumed to be exerted at
the closest relevant pins
• The weight of each truss member is neglected

Figure 1.7: A typical truss structure than can be loaded in both x and y directions

1.2.1 The stiffness matrix of a randomly oriented bar
Recall that each truss member can only be subjected to tension or compression along its axis.
However, the fact that the orientation of each truss member is now allowed to be arbitrary
implies that upon loading, the nodal displacements along ξ in the local coordinate system,
would in general result in displacements in both x and y in the global coordinate system. In
an effort to be systematic in our notation let us always denote as x, y the local coordinate
system and as ξ, η the local coordinate system as shown in Figure 1.2. A more detailed figure
regarding the displacements of a truss member due to deformation, in the local and global
coordinate systems is shown in Figure 1.8 that follows.

For a bar oriented at an angle θ with respect to the x-axis of the global system3, it is
straightforward to write,

ue1ξ = ue1x cos θ + ue1y sin θ (1.19)

ue2ξ = ue2x cos θ + ue2y sin θ (1.20)
3Note: The local coordinate system always has the axis ξ aligned with the axis of the bar
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Figure 1.8: (a) and (b): A schematic representation of the internal forces in the nodes of a bar.
(c) and (d): The nodal displacements of a tilted bar in x and y directions with respect to the
global coordinate system can always be calculated from the corresponding displacements in
the local coordinate system ξ,η.

Notice however, that the above equations can be expressed in matrix form as

deξ,η = Te(θ) · dex,y ⇒
[
ue1ξ
ue2ξ

]
=

[
cos θ sin θ 0 0

0 0 cos θ sin θ

]
·


ue1x
ue1y
ue2x
ue2y

 (1.21)

where matrix T is a rotation matrix, associated with the truss member under consideration
and depends only on the orientation angle θ. In the equation that follows, the local c.s. ξ − η
will be denoted as L and the global c.s. x− y as G for convenience. Now recall,

FeL = Ke
L · deL ⇒ FeG ·Te(θ) = Ke

L ·Te(θ) · deG ⇒ FeG =
[
TeT(θ) ·Ke

L ·Te(θ)
]
· deG

Now dropping the subscript G, knowing that we refer to the global system we write,

Fe = Ke · de (1.22)
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with

Ke = TeT(θ) ·Ke
L ·Te(θ) = ke


cos θ 0
sin θ 0

0 cos θ
0 sin θ

·[ 1 −1
−1 1

]
·
[
cos θ sin θ 0 0

0 0 cos θ sin θ

]
(1.23)

or

Ke = ke


cos2 θ cos θ sin θ − cos2 θ − cos θ sin θ

cos θ sin θ sin2 θ − cos θ sin θ − sin2 θ
− cos2 θ − cos θ sin θ cos2 θ cos θ sin θ
− cos θ sin θ − sin2 θ cos θ sin θ sin2 θ


Finally, notice that since Te(θ) is just a rotation matrix it satisfies Te(θ) ·TeT(θ) = I since,

Te(θ) ·TeT(θ) =

[
cos θ sin θ 0 0

0 0 cos θ sin θ

]
·


cos θ 0
sin θ 0

0 cos θ
0 sin θ

 = (cos2 θ + sin2 θ)

[
1 0
0 1

]
= I

Now that we were able to form the elemental stiffness matrix for a bar that is randomly
oriented in the 2D space, it is just a matter of extending all the elemental stiffness matrices
in the structure to perform the assembly operation as described in example 1. The partition
method to enforce the boundary conditions applies here as well and the unknown nodal
displacements and reaction forces will be determined from (1.12) and (1.13) respectively.

Remark 4 Notice that the elemental stiffness matrix for a randomly oriented bar, apart
from the larger matrix dimensions, also has a different form compared to 1D. A convenient
way to explain which type of information is stored in each cell of the elemental stiffness
matrix is the following,

Ke =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


(1x) (1y) (2x) (2y)

(1x)
(1y)
(2x)
(2y)

It will be useful to keep this in mind when you are dealing with truss problems in 2D.
Sometimes, assembling matrices of this form for truss systems with multiple members
makes it confusing to think about which component refers to which coordinate.

In what follows, we will solve a relatively simple truss problem to apply the above general-
izations.

� Example 3 Consider the simple truss structure consisting of two bars, that have their left
endpoints pinned on a vertical wall as shown in Figure 1.9. We are requested to determine the
unknown displacements u2x, u2y

We begin by writing down the element connectivity matrix which in this case has the
form, Now given that cos(45◦) = − cos(135◦) =

√
2/2 we can write down the element stiffness
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Figure 1.9: An example of 2 bars connected to a rigid wall to the left, loaded with point forces
P1, P2 in the x and y directions

Element Node 1 Node 2 Angle θ
1 1 2 45◦

2 2 3 135◦

Table 1.2: The element connectivity matrix for the truss system in example3

matrix in the global coordinates as,

K1 =
k

2


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


(1x) (1y) (2x) (2y)

(1x)
(1y)
(2x)
(2y)

and K2 =
k

2


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


(2x) (2y) (3x) (3y)

(2x)
(2y)
(3x)
(3y)

Now using the connectivity table along with the elemental stiffness matrices, wemay assembly
the full stiffness matrix of the structure as,

K =
k

2



1 1 −1 −1 0 0
1 1 −1 −1 0 0
−1 1 1 + 1 1− 1 −1 1
−1 −1 1− 1 1 + 1 1 −1
0 0 −1 1 1 −1
0 0 1 −1 −1 1


(1x) (1y) (2x) (2y) (3x) (3y)

(1x)
(1y)
(2x)
(2y)
(3x)
(3y)

⇒ K =



1 1 −1 −1 0 0
1 1 −1 −1 0 0
−1 1 2 0 −1 1
−1 −1 0 2 1 −1
0 0 −1 1 1 −1
0 0 1 −1 −1 1



We may now enforce the boundary conditions and proceed with solving the system of equa-
tions. The set of free nodes is only node 2, whereas nodes 1 and 3 are the essential nodes since
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their displacements are known. Therefore,

dE =


0
0
0
0

 , FE =


F1x

F1y

F3x

F3y

 , dF =

[
u2x
u2y

]
, FF =

[
P1

P2

]

Hence, wemay also rearrange the columns and rows in the stiffnessmatrix in order to construct
the submatrices KEE ,KEF ,KFE ,KFF as follows,

K =
k

2



1 1 0 0 −1 −1
1 1 0 0 −1 −1
0 0 1 −1 −1 1
0 0 −1 1 1 −1

−1 1 −1 1 2 0
−1 −1 1 −1 0 2


(1x) (1y) (3x) (3y) (2x) (2y)

(1x)
(1y)
(3x)
(3y)
(2x)
(2y)

and,

KEE =
k

2


1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

 , KFF =
k

2

[
2 0
0 2

]

KEF =
k

2


−1 −1
−1 −1
−1 1
1 −1

 , KFE =
k

2

[
−1 1 −1 1
−1 −1 1 −1

]

We can now solve for dF as,

dF = K−1FF · (FF −KFE · dE)⇒ dF =
1

k

[
P1

P2

]
Finally, with dF known we can now determine the unknown reaction forces at nodes 1 and 3
as,

FE = KEE · dE + KEF · dF =
k

2

1

k


−1 −1
−1 −1
−1 1
1 −1

 · [P1

P2

]
=

1

2


−P1 −P2

−P1 −P2

−P1 P2

P1 −P2


�




	Part I — Theory
	1 Analysis of Discrete Systems
	1.1 Trusses in 1D
	1.2 Trusses in 2D

	Index


